
Serenity-Climate-Change	Model	
	
Adapted	from:	

• Tinker, R. and Wilensky, U. (2007). NetLogo Climate Change model.
http://ccl.northwestern.edu/netlogo/models/ClimateChange. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

	
	
globals	[
		sky-top						;;	y	coordinate	of	top	row	of	sky	
		earth-top				;;	y	coordinate	of	top	row	of	earth	
		temperature		;;	overall	temperature	
		slow									;;	slow	down	counter	
]	
	
breed	[rays	ray]					;;	packets	of	sunlight	
breed	[IRs	IR]							;;	packets	of	infrared	radiation	
breed	[heats	heat]			;;	packets	of	heat	energy	
breed	[CO2s	CO2]					;;	packets	of	carbon	dioxide	
	
breed	[clouds	cloud]	
clouds-own	[cloud-speed	cloud-id]	
	
;;	
;;	Setup	Procedures	
;;	
	
to	setup	
		clear-all	
		set-default-shape	rays	"ray"	
		set-default-shape	IRs	"ray"	
		set-default-shape	clouds	"cloud"	
		set-default-shape	heats	"dot"	
		set-default-shape	CO2s	"CO2-molecule"	
		setup-world	
		set	temperature	12	
		reset-ticks	
end	
	
to	setup-world	
		set	sky-top	max-pycor	-	5	
		set	earth-top	0	

		ask	patches	[;;	set	colors	for	the	different	sections	of	the	world	
				if	pycor	>	sky-top	[;;	space	
						set	pcolor	scale-color	white	pycor	22	15	
]	
				if	pycor	<=	sky-top	and	pycor	>	earth-top	[;;	sky	
						set	pcolor	scale-color	blue	pycor	-20	20	
]	
				if	pycor	<	earth-top	
						[set	pcolor	red	+	3]	;;	earth	
				if	pycor	=	earth-top	;;	earth	surface	
						[update-albedo]	
]	
end	
	
;;	
;;	Runtime	Procedures	
;;	
	
to	go	
		ask	clouds	[fd	cloud-speed]		;	move	clouds	along	
		run-sunshine			;;	step	sunshine	
		;;	if	the	albedo	slider	has	moved	update	the	color	of	the	"earth	surface"	patches	
		ask	patches	with	[pycor	=	earth-top]	
				[update-albedo]	
		add-CO2;;	New	Code	adds	CO2	to	the	model	based	upon	an	input	
		remove-CO2;;	New	Code	removes	CO2	from	the	model	based	upon	an	input	
		run-heat		;;	step	heat	
		run-IR				;;	step	IR	
		run-CO2			;;	moves	CO2	molecules	
		tick	
end	
	
to	update-albedo	;;	patch	procedure	
		set	pcolor	scale-color	green	albedo	0	1	
end	
	
to	add-cloud												;;	erase	clouds	and	then	create	new	ones,	plus	one	
		let	sky-height	sky-top	-	earth-top	
		;;	find	a	random	altitude	for	the	clouds	but	
		;;	make	sure	to	keep	it	in	the	sky	area	
		let	y	earth-top	+	(random-float	(sky-height	-	4))	+	2	
		;;	no	clouds	should	have	speed	0	
		let	speed	(random-float	0.1)	+	0.01	
		let	x	random-xcor	

		let	id	0	
		;;	we	don't	care	what	the	cloud-id	is	as	long	as	
		;;	all	the	turtles	in	this	cluster	have	the	same	
		;;	id	and	it	is	unique	among	cloud	clusters	
		if	any?	clouds	
		[set	id	max	[cloud-id]	of	clouds	+	1]	
	
		create-clouds	3	+	random	20	
		[
				set	cloud-speed	speed	
				set	cloud-id	id	
				;;	all	the	cloud	turtles	in	each	larger	cloud	should	
				;;	be	nearby	but	not	directly	on	top	of	the	others	so	
				;;	add	a	little	wiggle	room	in	the	x	and	ycors	
				setxy	x	+	random	9	-	4	
										;;	the	clouds	should	generally	be	clustered	around	the	
										;;	center	with	occasional	larger	variations	
										y	+	2.5	+	random-float	2	-	random-float	2	
				set	color	white	
				;;	varying	size	is	also	purely	for	visualization	
				;;	since	we're	only	doing	patch-based	collisions	
				set	size	2	+	random	2	
				set	heading	90	
]	
end	
	
to	remove-cloud							;;	erase	clouds	and	then	create	new	ones,	minus	one	
		if	any?	clouds	[
				let	doomed-id	one-of	remove-duplicates	[cloud-id]	of	clouds	
				ask	clouds	with	[cloud-id	=	doomed-id]	
						[die]	
]	
end	
	
to	run-sunshine	
		ask	rays	[
				if	not	can-move?	0.3	[die]		;;	kill	them	off	at	the	edge	
				fd	0.3																								;;	otherwise	keep	moving	
]	
		create-sunshine		;;	start	new	sun	rays	from	top	
		reflect-rays-from-clouds		;;	check	for	reflection	off	clouds	
		encounter-earth			;;	check	for	reflection	off	earth	and	absorption	
end	
	

to	create-sunshine	
		;;	don't	necessarily	create	a	ray	each	tick	
		;;	as	brightness	gets	higher	make	more	
		if	10	*	sun-brightness	>	random	50	[
				create-rays	1	[
						set	heading	160	
						set	color	yellow	
						;;	rays	only	come	from	a	small	area	
						;;	near	the	top	of	the	world	
						setxy	(random	10)	+	min-pxcor	max-pycor	
]	
]	
end	
	
to	reflect-rays-from-clouds	
	ask	rays	with	[any?	clouds-here]	[;;	if	ray	shares	patch	with	a	cloud	
			set	heading	180	-	heading			;;	turn	the	ray	around	
]	
end	
	
to	encounter-earth	
		ask	rays	with	[ycor	<=	earth-top]	[
				;;	depending	on	the	albedo	either	
				;;	the	earth	absorbs	the	heat	or	reflects	it	
				ifelse	100	*	albedo	>	random	100	
						[set	heading	180	-	heading]	;;	reflect	
						[rt	random	45	-	random	45	;;	absorb	into	the	earth	
								set	color	red	-	2	+	random	4	
								set	breed	heats]	
]	
end	
	
to	run-heat				;;	advances	the	heat	energy	turtles	
		;;	the	temperature	is	related	to	the	number	of	heat	turtles	
		set	temperature	0.99	*	temperature	+	0.01	*	(12	+	0.1	*	count	heats)	
		ask	heats	
		[
				let	dist	0.5	*	random-float	1	
				ifelse	can-move?	dist	
						[fd	dist]	
						[set	heading	180	-	heading]	;;	if	we're	hitting	the	edge	of	the	world,	turn	around	
				if	ycor	>=	earth-top	[;;	if	heading	back	into	sky	
						ifelse	temperature	>	20	+	random	40	
														;;	heats	only	seep	out	of	the	earth	from	a	small	area	

														;;	this	makes	the	model	look	nice	but	it	also	contributes	
														;;	to	the	rate	at	which	heat	can	be	lost	
														and	xcor	>	0	and	xcor	<	max-pxcor	-	8	
								[set	breed	IRs																				;;	let	some	escape	as	IR	
										set	heading	20	
										set	color	magenta]	
								[set	heading	100	+	random	160]	;;	return	them	to	earth	
]	
]	
end	
	
to	run-IR	
		ask	IRs	[
				if	not	can-move?	0.3	[die]	
				fd	0.3	
				if	ycor	<=	earth-top	[;;	convert	to	heat	if	we	hit	the	earth's	surface	again	
						set	breed	heats	
						rt	random	45	
						lt	random	45	
						set	color	red	-	2	+	random	4	
]	
				if	any?	CO2s-here				;;	check	for	collision	with	CO2	
						[set	heading	180	-	heading]	
]	
end	
	
to	add-CO2		;;	randomly	adds	CO2	molecules	to	atmosphere	based	upon	a	counter	
		let	sky-height	sky-top	-	earth-top	
		set	slow	(slow	+	1)	
		if	slow	=	50	[create-CO2s	GreenHouseGas	[
				set	color	green	
				;;	pick	a	random	position	in	the	sky	area	
				setxy	random-xcor	
										earth-top	+	random-float	sky-height	
]]	
		if	slow	=	50	[set	slow	0]	
end	
	
to	remove-CO2	;;	randomly	remove	25	CO2	molecules	
		repeat	Absorption	[
				if	any?	CO2s	[
						ask	one-of	CO2s	[die]	
]	
]	

end	
	
to	run-CO2	
		ask	CO2s	[
				rt	random	51	-	25	;;	turn	a	bit	
				let	dist	0.05	+	random-float	0.1	
				if	[shade-of?	green	pcolor]	of	patch-ahead	dist	[die]	
				;;	keep	the	CO2	in	the	sky	area	
				if	[not	shade-of?	blue	pcolor]	of	patch-ahead	dist	
						[set	heading	180	-	heading]	
				fd	dist	;;	move	forward	a	bit	
]	
end	
	
	
;	Copyright	2007	Uri	Wilensky.	
;	See	Info	tab	for	full	copyright	and	license.	

